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We can generate images in a desired style or with
a more natural color distribution without retraining
the diffusion model, by exploiting a signal-leak bias
present in the model.

Common diffusion models never fully corrupt
images during training 114l
Xp=.)0p xo++/1 — @y e with xo~p(x,) and e~N(0,1)

However, the process of generating images starts
with pure noise x~N(0,I), oblivious of the signal
leak /@ x, present in x, during training, creating a
bias.
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xr ~N(@0,1I)
#* p(xr)

Instead of retraining or finetuning %3] to remove
this bias, we exploit it to our advantage, generating
images in the style we want.

We include a signal-leak ./a; ¥ in X, at inference
time, starting generating images from:

5C\T: (,YTf--\/l—C_(TEWIth fNCI(f) and ENN(O,I)

- q(x) = p(xp)
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We obtain a distribution g(%) in the pixel domain, by
approximating the distribution p(x,) as independent

Gaussian distributions for each pixel.
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-:’:— Better low-frequency components

The diffusion model uses the signal-leak /@, x, to
deduce the low-frequency information about x,
from x.. Using X ~ N (0,]) biases the low-frequency
components towards medium values.

Training Inference
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To avoid this, we additionnally model the low-
frequency components, estimating their mean and
covariance, and obtain a distribution g(X) = p(x,).

Original results SD 2.1 - greyish images with low contrast
_or varlatlon of colors

Our results SD 2.1 ¥4 with ours — more varied and natural

dlstrlbutlon of low-frequency components
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Style-adaptation with the original

» diffusion model

SD 2.1 14

“[...] in the style of
line art, pastel colors,
white background.”

SD 2.1 4
with ours
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“A blue city at night,
long exposure,
orange and blue.”

SD 2.1 14
with ours

@ More control on low-frequency

components

Setting manually the

signal-leak /a; ¥ in X

— control on the low-frequency
components (e.g., the mean
color of the generated images)

“line-art” model [°l: Stable Diffusion v1.4 finetuned with Textual Inversion 6! on 7 line-art images P! (bright background, pastel colors)
“nasa space” model Il: Stable Diffusion v2 finetuned with DreamBooth [7:8] on 24 photos of astronomical phenomena ']
Blue city at night: using 9 images from https://unsplash.com/collections/67793987 (Credits: Unsplash, @borkography)
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