

Martin Nicolas Everaert Radhakrishna Achanta Athanasios Fitsios Marco Bocchio Sabine Süsstrunk Sami Arpa

Signal-leak bias

We can generate images in a desired style or with a more natural color distribution without retraining the diffusion model, by exploiting a signal-leak bias present in the model.

- Better low-frequency components

Style-adaptation with the original diffusion model

The diffusion model uses the signal-leak $\sqrt{\overline{\alpha}_T} x_0$ to deduce the low-frequency information about x_0 from x_T . Using $\hat{x}_T \sim \mathcal{N}(0, I)$ biases the low-frequency components towards medium values.

Common diffusion models never fully corrupt **images** during training ^[1,2]: $x_T = \sqrt{\bar{\alpha}_T} x_0 + \sqrt{1 - \bar{\alpha}_T} \varepsilon$ with $x_0 \sim p(x_0)$ and $\varepsilon \sim \mathcal{N}(0, I)$

However, the process of generating images starts with pure noise $\hat{x}_T \sim \mathcal{N}(0, I)$, oblivious of the signal leak $\sqrt{\bar{\alpha}_T x_0}$ present in x_T during training, creating a bias.

Instead of retraining or finetuning ^[1,2,3] to remove this bias, we exploit it to our advantage, generating images in the style we want.

line art, pastel colors, white background."

SD 2.1^[4]

long exposure,

SD 2.1^[4]

with ours

"[...] in the style of

SD 2.1^[4]

More control on low-frequency components

Setting manually the

 \rightarrow control on the low-frequency

We include a signal-leak $\sqrt{\overline{\alpha}_T} \, \widetilde{x}$ in \hat{x}_T at inference time, starting generating images from: $\hat{x}_T = \sqrt{\bar{\alpha}_T} \, \tilde{x} + \sqrt{1 - \bar{\alpha}_T} \, \epsilon$ with $\tilde{x} \sim q(\tilde{x})$ and $\epsilon \sim \mathcal{N}(0, I)$

 $q(\tilde{x}) \approx p(x_0)$ realigns training and inference distributions.

To avoid this, we additionnally model the lowfrequency components, estimating their mean and covariance, and obtain a distribution $q(\tilde{x}) \approx p(x_0)$.

Original results SD 2.1^[4] \rightarrow greyish images with low contrast or variation of colors

We obtain a distribution $q(\tilde{x})$ in the **pixel domain**, by approximating the distribution $p(x_0)$ as independent Gaussian distributions for each pixel.

signal-leak $\sqrt{\bar{\alpha}_T} \, \tilde{x}$ in \hat{x}_T

components (e.g., the mean color of the generated images)

"line-art" model^[5]

"line-art" model^[5] with ours

"nasa space" model^[7]

"nasa space"

model^[7]

with ours

Our results SD 2.1^[4] with ours \rightarrow more varied and natural distribution of low-frequency components

"line-art" model^[5]: Stable Diffusion v1.4 finetuned with Textual Inversion^[5,6] on 7 line-art images^[5] (bright background, pastel colors) "nasa space" model ^[7]: Stable Diffusion v2 finetuned with DreamBooth ^[7,8] on 24 photos of astronomical phenomena ^[7] Blue city at night: using 9 images from https://unsplash.com/collections/67793987 (Credits: Unsplash, @borkography)

[1] Guttenberg. Diffusion with Offset Noise. 2023 [2] Lin et al. Common Diffusion Noise Schedules and Sample Steps are Flawed. arXiv 2023 [3] Everaert et al. Diffusion in Style. ICCV 2023 [4] Stability AI. Stable Diffusion 2.1. 2022 + Rombach et al. High-Resolution Image Synthesis with Latent Diffusion Models. CVPR 2022 [5] Karan. "line-art" model. https://huggingface.co/sdconcepts-library/line-art. 2022 [6] Gal et al. An Image is Worth One Word: Personalizing Text-to-Image Generation using Textual Inversion. ICLR 2023 [7] MatAlart. "nasa space" model. https://huggingface.co/sd-dreambooth-library/nasaspace-v2-768. 2022 [8] Ruiz et al. DreamBooth: Fine Tuning Text-to-Image Diffusion Models for Subject-Driven Generation. CVPR 2023

This work is supported by Innosuisse grant 48552.1 IP-ICT.

https://ivrl.github.io/signal-leak-bias/