
Exploiting the Signal-Leak Bias
in Diffusion Models

To avoid this, we additionnally model the low-
frequency components, estimating their mean and 
covariance, and obtain a distribution 𝑞 "𝑥 ≈ 𝑝 𝑥! .
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Common diffusion models never fully corrupt 
images during training [1,2]:
𝑥" = '𝛼" 	𝑥!+ 1 − '𝛼" 	𝜀  with 𝑥!~𝑝 𝑥! 	and 𝜀~𝒩(0, 𝐼)

!𝑥! 	~	𝒩 0, 𝐼 	
≠ 	𝑝 𝑥!

We include a signal-leak '𝛼" 	 "𝑥 in 5𝑥" at inference 
time, starting generating images from:
5𝑥" = '𝛼" 	 "𝑥 + 1 − '𝛼" 	𝜀	with "𝑥~	𝑞 "𝑥  and 𝜀~𝒩(0, 𝐼)

“line-art” model [5]: Stable Diffusion v1.4 finetuned with Textual Inversion [5,6] on 7 line-art images [5] (bright background, pastel colors)
“nasa space” model [7]: Stable Diffusion v2 finetuned with DreamBooth [7,8] on 24 photos of astronomical phenomena [7]
Blue city at night: using 9 images from https://unsplash.com/collections/67793987 (Credits: Unsplash, @borkography)

“[…] in the style of 
line art, pastel colors, 
white background.”

“line-art” model [5] 

“line-art” model [5] 
with ours

“nasa space” 
model [7]

SD 2.1 [4]

Instead of retraining or finetuning [1,2,3] to remove 
this bias, we exploit it to our advantage, generating 
images in the style we want.

Setting manually the
signal-leak '𝛼" 	 "𝑥 in 5𝑥" 

The diffusion model uses the signal-leak '𝛼" 	𝑥! to 
deduce the low-frequency information about 𝑥! 
from 𝑥". Using	 5𝑥" 	~	𝒩 0, 𝐼  biases the low-frequency 
components towards medium values.

SD 2.1 [4] with ours → more varied and natural 
distribution of low-frequency components

We obtain a distribution 𝑞 "𝑥  in the pixel domain, by 
approximating the distribution 𝑝 𝑥!  as independent 
Gaussian distributions for each pixel.

Style-adaptation with the original
           diffusion model

More control on low-frequency
           components

Our results

Original results
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However, the process of generating images starts 
with pure noise 5𝑥"~𝒩(0, 𝐼), oblivious of the signal 
leak '𝛼" 	𝑥! present in 𝑥" 	during training, creating a 
bias.

Project 
website:

→	control on the low-frequency 
components (e.g., the mean 
color of the generated images)

SD 2.1 [4] 
with ours

𝑞 "𝑥 ≈ 𝑝 𝑥!  
realigns 
training and 
inference 
distributions.

IDCT(𝑀&⊙𝑋!)
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SD 2.1 [4] → greyish images with low contrast 
or variation of colors

We can generate images in a desired style or with 
a more natural color distribution without retraining 
the diffusion model, by exploiting a signal-leak bias 
present in the model.

SD 2.1 [4]

with ours

SD 2.1 [4]

“A blue city at night, 
long exposure, 
orange and blue.”


