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We perform style adaptation of Stable Diffusion by fine-tuning it 
with a style-specific noise distribution instead of the default 
𝒩 𝟎! , 𝐈!×!  [1,2].

We compute the style-specific noise parameters 𝝁#$%&' and 𝚺#$%&' 
from a small set of images of the desired style.

We use our approach to fine-tune Stable Diffusion v1.5[1] to different styles, such as anime sketches, few-
shot Pokemon images, and comics images.
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Style 2, few-
shot Pokemon 
images[11]:

Style 3, comics 
images[12]:

We sample the initial latent tensor '𝒛())) from the style-specific noise distribution and use the fine-tuned 
U-Net to iteratively denoise it.

Evaluation
Evaluating CLIP[3] and FID[4,5] scores on a range of guidance 
weights[6] 𝑤, our method outperforms prompt engineering, style 
transfer[7], and fine-tuning without noise distribution change[8,9]. 
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The ⅃-shape of the curves indicates a trade-off between style 
and content.

References
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The initial latent tensor '𝒛())) affects images composition and 
style, so adapting it to the style facilitates style adaptation. 

Apart from the style-specific noise distribution 𝒩 𝝁#$%&', 𝚺#$%&' , 
the fine-tuned model can be used like Stable Diffusion.
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