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on 360° Neural Radiance Fields

Supplementary Material

A. Additional Results

360-degree scenes. We encourage our readers to view
the supplementary video for a comprehensive set of re-
sults from our evaluated datasets and to qualitatively as-
sess our method. To quantitatively evaluate the output of
InNeRF360 against ground truth inpainted scenes, we eval-
uate our method on captured real-world scenes. Fig. 10
demonstrates that even with occlusion between the plant
and the object to remove, our method successfully gener-
ates clean inpainting with the rest of the scene unmodified.

To clarify our evaluation, we conduct quantitative exper-
iments on the baselines Ideal, ObjectNeRF-M, SPN-360-M
on our captured real-world datasets:Starbucks, Glass Cat
and 4-Objects The ObjectNeRF-M baseline involves train-
ing a NeRF with L2 loss outside the segmentation masks
only. ObjectNeRF-M produces lower-quality inpainting re-
sults than our InNeRF360, evidencing that inpainting on
360-degree NeRF is more complicated than frontal-facing
scenes. The implementation of SPN-360 is based on NeR-
Facto. Its segmentation masks and inpainting results are
both generated by the method used in SPIn-NeRF so that
we can compare them with our InNeRF360 results. This
lets us contrast the performance of the complete methods.
To address the concern for reliability, we provide evalua-
tions with SPN360-M which uses our segmentation masks
and SPIn-NeRF’s inpainting technique. While SPN360-M
outperforms SPN-360, it still falls short of our InNeRF360’s
performance. Moreover, it is less effective than NeRFactor
combined with Lgeom, see results in Tab.1 of the main paper.
To show the reliability of our numerical results, we provide
the requested evaluation for Ideal, i.e., fitting a NeRF on
ground truth scenes without the object(s) to be inpainted,
which serves as an upper bound for the best inpainting re-
sults with the same inputs and NeRF architecture.

We capture ground truth datasets with the objects re-
moved from the scene, with which we evaluate LPIPS [44]
and Frechet Inception Distance (FID) [1 1] metric as metric.
As indicated in Tab. 1 and Tab. 3, InNeRF360 outperforms
the other two methods in terms of the similarity between the
activations of the inpainted region and the ground truth.

Ablation on mask dilation. In Fig. 11, we demonstrate
the importance of mask dilatation. We conducted experi-
ments using different numbers of pixels on the contour for
dilation, specifically with the set {11,21,41,51,101}, and
determined that 51 pixels yield the best inpainting perfor-
mance. Allowing for more contextual information in the

Starbucks Glass Cat Multiple
Methods LPIPS| FID] LPIPS| FID| LPIPS| FID|
Ideal 0.4016 130.79  0.3928 129.95 0.3829 124.82

ObjNeRF-M  0.6967 27592  0.7048 288.91 0.6743 260.48
SPN360-M  0.6037 198.64 0.6542 253.74 0.6073 192.45
InNeRF360 0.4523 153.46  0.4158 142.60 0.42064 147.49

Table 3. Quantitative results of requested baselines Ideal,
ObjectNeRF-M, SPN-360-M and our InNeRF360 on rw datasets.

Methods LPIPS | FID|
SPIn-NeRF  0.4971  149.41
Ours 04764 129.54

Table 4. Quantitative comparison with SPIn-NeRF on the quality
of synthesized inpainting regions, averaged over the front-facing
datasets that we evaluate.

2D image inpainter encourages the inclusion of more back-
ground details, thereby enhancing consistency across dif-
ferent views. However, due to the limited 3D understanding
of 2D image inpainters, further refinement of the initially
inpainted scene is necessary.

Front-facing scenes. InNeRF360 works for front-facing
scenes with only text instructions, and without hand-drawn
masks as SPIn-NeRF. In Fig. 12, our method synthesizes
inpainting content that is more perceptually consistent with
the surroundings for the staircase without introducing ar-
tifacts, while SPIn-NeRF leaves the partial shadow of the
box. On the bench scene, our method also gives a more per-
ceptually robust synthesized texture to the fence. Fig. 13
show additional qualitative results of InNeRF360 on frontal
datasets. Our method does not introduce visual artifacts to
the inpainted regions, and we encourage the reader to in-
spect our supplementary video for better visualization.

For quantitative analysis, we evaluate our method on
the SPIn-NeRF frontal datasets by comparing the synthe-
sized contents in the bounding box region with the provided
ground truth images, following the setup of SPIn-NeRF. As
displayed in, Tab. 4, InNeRF360 synthesizes content that is
closer to the ground truth data.

B. Dataset Details

We conducted experiments on ten 360-degree scenes
from various datasets: Bear, Vasedeck, Garden, Room,
Bulldozer and Floating Tree, as well as four captured
scenes, Cup, Starbucks, Glass Cat and 4-Objects specif-
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Figure 10. Quantitative results on our captured datasets. InNeRF360 generates consistent inpainting region on the occluded sections

between the plant and the cup.
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Figure 11. Contexualized segmentation. (a) Original image; (b)
top: segmentation masks without dilation; bottom: resulting in-
painted image; (c) top: segmentation masks with dilation; bottom:
resulting inpainted image. Dilating the mask provides contextual
pixel information and improves inpainting quality.

ically for quantitative evaluation purposes. We select
360° scenes containing different challenging aspects for
the segmentation and inpainting tasks. Bear contains a
large section to remove and complex background texture;
Vasedeck contains a transparent object to select; Room con-

tains multiple objects in different places in the scene; Bull-
dozer contains multiple instances of occlusion between ob-
jects to remove and other objects in the scene; Floating Tree
contains object that does not locate on a flat surface.

Our scenes are captured using a smartphone, and the
camera poses are extracted using PolyCam [32]. It’s im-
portant to note that the estimated camera poses are object-
centric but may contain noise, which can result in blurriness
outside of the object region. Consequently, for our quanti-
tative evaluation, we specifically focus on assessing the in-
painting performance within the bounding box regions of
the objects. The number of images included in each scene
can be found in Tab. 5. The camera poses are sampled in the
open area above and around the object(s) to be inpainted.

C. User Studies on View Consistency

We evaluate the user studies as shown in Tab. 2 with
49 users. For each scene, we present each participant with
two 95-frame video clips: one rendered from our inpainted
NeRF scene and the other from per-frame inpainted render-
ings of the original NeRF scene. Participants are asked to
indicate which video appears more visually consistent and
perceptually plausible. We calculate the percentage pref-
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Figure 12. Qualitative comparison with SPIn-NeRF on front-
facing datasets. InNeRF360 generates 3D-consistent inpaintings
that contain fewer visual artifacts and are more aligned with sur-
rounding regions.

360° Size Captured Size Frontal Sizes
Vasedeck 116 Cup 117 [26]-(10) 60
Garden 185  Starbucks 199 Book 60
Room 311 4-Objects 206 Sink 60
Bulldozer 359 Glass Cat 136 Stairs 60
Bear 96 [43]-(001) 260

Floating Tree 96

Table 5. Number of images in each dataset.

erence for each option by dividing the number of votes by
the total number of participants. Fig. 14 provides a set of
selected examples that we provide to the users.

This experiment aims to demonstrate that InNeRF360
offers superior view-consistency across frames compared
to per-frame inpaintings. InNeRF360 achieves such perfor-
mance due to our geometric and appearance refinement to
the initialized NeRF from 2D inpainting. Our approach
includes a geometric prior that works in 3D to remove
density artifacts, and a masked LPIPS loss that ensures
the inpainted region blends perceptually consistently with
surrounding areas during training. Additionally, a trained
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Figure 13. Qualitative results of InNeRF360 on frontal dataset
scenes. More results can be found in our supplementary video.

NeRF scene inherently maintains 3D consistency. In con-
trast, per-frame editing relies solely on the local informa-
tion of a single 2D viewpoint, lacking 3D consistency across
different views. This can result in visual artifacts, which In-
NeRF360 effectively addresses and resolves.

D. Editing Accuracy

With a simple modification of our method by replac-
ing the image inpainter with a mask-conditioned image ed-
itor [8], our method can produce view-consistent editing
on specific objects instructed by text, as shown in Fig. 15.
In this example, we do not use our Lgeom. Our baseline
Instruct-NeRF2NeRF (In2n) [9] is also capable of styliz-
ing NeRF scenes, but it cannot pinpoint a particular ob-
ject for either removal or editing. In2n relies on Instruct-
Pix2Pix [3] and operates solely in latent space for image
editing. It applies stylization to a large undesired area of
the NeRF scene, as illustrated in Fig. 9. In comparison,
the modified version of InNeRF360 works with object-level
modification, and delivers accurate editing results that accu-
rately address the requested object. Specifically, we utilize
our 3D consistent segmentation module to output masks for
the dataset images. Then our method can be connected with
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Figure 15. Comparison on In2n with a modified version of InNeRF360 on object-level stylization.

Original Dataset Image Inpainted Image

Figure 16. Examples of varying inpainted regions on the bear
dataset images. We use the 2D image inpainter [36]. We can see
the inconsistent inpaintings for two dataset images with similar
camera origins, which can lead to concentrated artifacts near the
inpainted region if trained into NeRF directly.

a mask-conditioned image editing method for object-level
editing. Here we use [8], a zero-shot image editing method
given a text-to-image denoising diffusion model.

Note that, however, the focus of InNeRF360 is to re-
move text-instructed object from the 360° NeRF scene.
We provide such examples only to demonstrate the easily

achievable extension to object-level editable NeRF with our
proposed segmentation method, by making use of powerful
2D image processing tools to address challenging 3D prob-
lems.

E. 2D Inpainting Examples

In the scene of Bear, the object of interest takes up a
large section of the image, and the background around the
bear has non-uniform and highly varying patterns. In these
cases, diffusion models tend to generate significant varia-
tions in pixel content for the inpainted region across dif-
ferent viewing perspectives, as indicated in Ln 385-386 of
the main paper on examples of noisy 2D inpainted images.
An example illustrating this limitation can be observed in
Fig.16 (b), where the inpainted regions exhibit significant
discrepancies between two adjacent viewpoints as shown in
(a). There are also some results on per-frame inconsistency
in our supplementary video.

F. Failure Cases

In Vasedeck: While the stain on the table is visually plau-
sible and view-consistent, it is in fact the shadow of the ob-
ject that was removed. Such shadow has soft edges and can
easily be mistaken as part of the floor texture, and thus is
overlooked by the image inpainter. Similarly in the staircase
scene in frontal datasets, our method cannot completely re-
move soft shadow, although we produce more plausible re-
sults than the baseline method.



Figure 17. Additional segmentation results on Bear, Garden and Vasedeck.

G. Design Justification on Geometry Guidance works [25, 26, 43]. Inpainting on 2D depth maps creates
inconsistency in geometry supervision between different

views, similar to inpainting on RGB images in 2D. Instead,

In InNeRF360, we opt not to use the inpainted depth
we utilize a trained 3D diffusion model as priors to super-

images as inpainting priors on geometry like our prior



vise the removal of floaters, and therefore operate directly
in 3D space to avoid inconsistency in geometry supervision.
On the other hand, we observe that inpainting depth
maps enforce the accumulated floaters in the inpainted re-
gion to be “scattered” onto surrounding background en-
vironments, causing a blurry background similar to train-
ing with pixel-wise L1 in the inpainted region. As shown
in Fig. 6, the background water pipe has been made very
blurry in the output of SPN-360 which inpaints on both
depth maps and RGB images. By not modifying 2D depth
maps but operating on 3D space to remove density artifacts
directly, we propose a method that is more effective than
scattering such artifacts around into unconcentrated regions.
The artifacts in the latter scenario are harder to resolve.

H. Implementation Details.
H.1 Training geometric priors

During the training on shapenet, we use voxelized cubes
of m3 = 32 x 32 x 32. We clamp the density values in
voxel grids into [0, 1]. During inference time, the geometric
prior performs one forward pass without backpropagating
through the diffusion model. We set the threshold for deter-
mining whether a voxel is empty to be p = 0.01, and for
floater detection and removal, we set w = 0.02. Looking
at Eq. (6), we experiment with the value of w, which is a
hyperparameter for the amount of density to be increased
in the occupied voxels, and realize that it trades off with
inpainting quality. Specifically, as we decrease w, more
densities are guided by the diffusion priors to be removed,
and thus occasionally we observe see-through surfaces in
the trained scene. As we increase w, floaters artifact may
not be completely removed from the scene. The learning
rate ¢ is chosen between 10 and 50. We empirically find
out that for objects that take up small regions in the scene
such as Bulldozer, the sampled cube size should be upper
bounded around 5% of the scene. A more automatic way
of determining the sampled cube size using the prompt and
the Shapenet dataset will be interesting to explore in future
work.

H.2 Depth warping refinement

For each training view, we select 8 other views with 20
points per view for depth-warping, for a balanced choice
over efficiency on the iteration of dataset images and refined
segmentation quality.

H.3 Training Inpainted NeRF

For the 2D image inpainter, we adapt the open-sourced
code from the Latent Diffusion Model [36]. We use the
‘Nerfacto’ model from NeRFStudio [39] as our underlying
backbone and adapt the implementation of diffusion priors

training from Nerfbusters [42]. Ageom = 0.1 and Aj;, = 0.1.
During training, we train for 1500 iterations without Lgcom
for initialization, and another 2500 iterations sampling 30
cubes per iteration.

H.4 Implementation details on SPN-360

We proposed a baseline SPN-360 that is stronger than
directly adapting SPIn-NeRF [26] on 360° data, as its re-
leased implementation does not support 360-degree NeRF.
The implementation of SPN-360 is based on NeRFacto. We
obtain masks for SPN-360 through initialization from Dino
and Semantic NeRF refinement, and inpaint with LaMa [38]
on both RGB and depth map. Its segmentation masks and
inpainting results are both generated by the method used
in SPIn-NeRF so that we can compare them with our In-
NeRF360 results

I. Additional results on segmentation.

Fig. 17 shows additional segmentation results on se-
lected datasets with our segmentation module.
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